Markscheme

November 2018

Physics

Standard level

Paper 2

This markscheme is the property of the International
Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Question			Answers	Notes	Total
1.	a		change in momentum each second $=6.6 \times 10^{-6} \times 5.2 \times 10^{4}$ « $=3.4 \times 10^{-1} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$ » acceleration $=« \frac{3.4 \times 10^{-1}}{740}=» 4.6 \times 10^{-4} « \mathrm{~m} \mathrm{~s}^{-2} » \checkmark$		2
1.	b	i	ALTERNATIVE 1: (considering the acceleration of the spacecraft) time for acceleration $=\frac{30}{6.6 \times 10^{-6}}=« 4.6 \times 10^{6} » « s » \downarrow$ max speed $=$ «answer to $(\mathrm{a}) \times 4.6 \times 10^{6}=» 2.1 \times 10^{3}<\mathrm{m} \mathrm{s}^{-1} » \checkmark$ ALTERNATIVE 2: (considering the conservation of momentum) (momentum of 30 kg of fuel ions = change of momentum of spacecraft) $\begin{aligned} & 30 \times 5.2 \times 10^{4}=710 \times \text { max speed } \checkmark \\ & \max \text { speed }=2.2 \times 10^{3} « \mathrm{~m} \mathrm{~s}^{-1} » \end{aligned}$		2
1.	b	ii	problem may be too complicated for exact treatment \checkmark to make equations/calculations simpler \checkmark when precision of the calculations is not important \checkmark some quantities in the problem may not be known exactly \downarrow		1 max

(Question 1 continued)

Question			Answers	Notes	Total
1.	c	i	ions have same (sign of) charge \checkmark ions repel each other \checkmark		2
1.	c	ii	the forces between the ions do not affect the force on the spacecraft. \checkmark there is no effect on the acceleration of the spacecraft. \checkmark		2
1.	d	i	force per unit mass \checkmark acting on a small/test/point mass «placed at the point in the field» \downarrow		2
1.	d	ii	satellite has a much smaller mass/diameter/size than the planet «so approximates to a point mass» \checkmark		1

Question		Answers	Notes	Total
2.	a	ALTERNATIVE 1: $\begin{aligned} & r=\sqrt{\frac{\rho l}{\pi \mathrm{R}}} \circ \sqrt{\frac{7.2 \times 10^{-7} \times 12.5}{\pi \times 0.1}} \\ & r=5.352 \times 10^{-3} \\ & 5.4 \times 10^{-3} \text { «m» } \end{aligned}$ ALTERNATIVE 2: $\begin{aligned} & A=\frac{7.2 \times 10^{-7} \times 12.5}{0.1} \\ & r=5.352 \times 10^{-3} \checkmark \\ & 5.4 \times 10^{-3} \text { «m» } \end{aligned}$		3
2.	b	$\text { current in lamp }=\frac{5}{24} \text { «= } 0.21 » \text { «A» }$ OR $n=24 \times \frac{8}{5} \checkmark$ so «38.4 and therefore» 38 lamps \checkmark		2

(continued...)
(Question 2 continued)

Question			Answers	Notes	Total
2.	C		when adding more lamps in parallel the brightness stays the same \checkmark when adding more lamps in parallel the pd across each remains the same/at the operating value/ $24 \mathrm{~V} \checkmark$ when adding more lamps in parallel the current through each remains the same \checkmark lamps can be controlled independently \checkmark the pd across each bulb is larger in parallel \checkmark the current in each bulb is greater in parallel \checkmark lamps will be brighter in parallel than in series \checkmark In parallel the pd across the lamps will be the operating value $/ 24 \mathrm{~V} \checkmark$	Accept converse arguments for adding lamps in series: when adding more lamps in series the brightness decreases when adding more lamps in series the pd decreases when adding more lamps in series the current decreases lamps can't be controlled independently the pd across each bulb is smaller in series the current in each bulb is smaller in series in series the pd across the lamps will less than the operating value/24 V Do not accept statements that only compare the overall resistance of the combination of bulbs.	1 max

Question		Answers	Notes	Total
3.	a	ALTERNATIVE 1: $\text { initial momentum }=m v=\sqrt{2 \times 0.058 \times 0.63} «=0.27 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} »$ OR $m v=0.058 \times \sqrt{2 \times 9.81 \times 1.1} «=0.27 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} » \checkmark$ $\text { force }=« \frac{\text { change in momentum }}{\text { time }}=» \frac{0.27}{0.055} \checkmark$ $4.9 \text { «N» } \downarrow$ $F-m g=4.9 \text { so } F=5.5 \text { «N» } \downarrow$ ALTERNATIVE 2: $\begin{aligned} & « E_{\mathrm{k}}=\frac{1}{2} \mathrm{mv}^{2}=0.63 \mathrm{~J} » v=4.7 \mathrm{~m} \mathrm{~s}^{-1} \checkmark \\ & \text { acceleration }=« \frac{\Delta v}{\Delta \mathrm{t}}=» \frac{4.7}{55 \times 10^{-3}}=« 85 \mathrm{~m} \mathrm{~s}^{-2} » \checkmark \\ & 4.9 « \mathrm{~N} » \checkmark \\ & F-m g=4.9 \text { so } F=5.5 \text { «N» } \end{aligned}$		4

(continued...)
(Question 3 continued)

Question		Answers	ALTERNATIVE 1: concrete reduces the stopping time/distance \checkmark impulse/change in momentum same so force greater OR work done same so force greater \checkmark ALTERNATIVE 2: concrete reduces the stopping time \checkmark deceleration is greater so force is greater \checkmark	Allow reverse argument for grass.

Question			Answers	Notes	Total
4.	a		«air molecule» moves to the right and then back to the left \checkmark returns to X/original position \checkmark		2
4.	b		wavelength $=2 \times 1.4$ « $=2.8 \mathrm{~m}$ » \downarrow $c=« f \lambda=» 120 \times 2.8 «=340 \mathrm{~m} \mathrm{~s}^{-1} » \checkmark$ $K=« \rho c^{2}=1.3 \times 340^{2}=» 1.5 \times 10^{5} \downarrow$		3
4.	C	i	construction showing formation of image \checkmark	Another straight line/ray from image through the wall with line/ray from intersection at wall back to transmitter. Reflected ray must intersect boat.	1
4.	C	ii	interference pattern is observed OR interference/superposition mentioned \checkmark maximum when two waves occur in phase/path difference is $\mathrm{n} \lambda$ OR minimum when two waves occur 180° out of phase/path difference is $(n+1 / 2) \lambda \checkmark$		2

Question			Answers	Notes	Total
5.	a		identifies $\lambda=435 \mathrm{~nm} \checkmark$ $E=« \frac{h c}{\lambda}=» \frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{4.35 \times 10^{-7}} \checkmark$ $4.6 \times 10^{-19} \text { «J» }$		
5.	b		-0.605 OR -0.870 OR-1.36 to -5.44 AND arrow pointing downwards \checkmark	Arrow MUST match calculation in (a)(i) Allow ECF from (a)(i)	1
5.	C		Difference in energy levels is equal to the energy of the photon \checkmark Downward arrow as energy is lost by hydrogen/energy is given out in the photon/the electron falls from a higher energy level to a lower one \checkmark	Allow ECF from (a)(i)	$\begin{aligned} & 2 \\ & 3 \end{aligned}$

Question		Answers	Notes	Total
6.	a	$\begin{aligned} & \text { use of } I \propto \frac{1}{r^{2}} « 1.36 \times 10^{3} \times \frac{1}{1.5^{2}} » \\ & 604 « \mathrm{~W} \mathrm{~m}^{-2} » \end{aligned}$		2
6.	b	use of $\frac{600}{4}$ for mean intensity \checkmark $\text { temperature } / \mathrm{K}=« \sqrt[4]{\frac{600}{4 \times 5.67 \times 10^{-8}}}=» 230 \checkmark$		2
6.	c	recognize the link between molecular density/concentration and pressure low pressure means too few molecules to produce a significant heating effect OR low pressure means too little radiation re-radiated back to Mars \checkmark		2

Question			Answers	Notes	Total
7.	a		Internal energy is the sum of all the PEs and KEs of the molecules (of the oxygen) \checkmark PE of molecules in gaseous state is zero \checkmark (At boiling point) average KE of molecules in gas and liquid is the same \checkmark gases have a higher internal energy \checkmark	Molecules/particles/atoms must be included once, if not, award [1 max]	2 max
7.	b	i	ALTERNATIVE 1: flow rate of oxygen $=8$ «g s ${ }^{-1}$ » \downarrow $« 2.1 \times 10^{5} \times 8 \times 10^{-3} »=1.7 « \mathrm{~kW} » \checkmark$ ALTERNATIVE 2: $\begin{aligned} & Q=« 0.25 \times 32 \times 10^{-3} \times 2.1 \times 10^{5}=» 1680 « \mathrm{~J} » \\ & \text { power }=« 1680 \mathrm{~W}=» 1.7 « \mathrm{~kW} » \end{aligned}$		2
7.	b	ii	$V=« \frac{n R T}{p}=» 4.9 \times 10^{-3}$ « $\mathrm{m}^{3} » \downarrow$		1
7.	c		ideal gas has point objects \checkmark no intermolecular forces \checkmark non liquefaction \checkmark ideal gas assumes monatomic particles \checkmark the collisions between particles are elastic \checkmark	Allow the opposite statements if they are clearly made about oxygen eg oxygen/this can be liquified	1 max

