N18/4/PHYSI/SP2/ENG/TZ0/XX/M

Diploma Programme Programme du diplôme Programa del Diploma

Markscheme

November 2018

Physics

Standard level

Paper 2

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

- 2 -

C	luesti	ion	Answers	Notes	Total
1.	а		change in momentum each second = $6.6 \times 10^{-6} \times 5.2 \times 10^{4} \text{ s} = 3.4 \times 10^{-1} \text{ kg m s}^{-1} \text{ s} \checkmark$ acceleration = $\left(\frac{3.4 \times 10^{-1}}{740}\right) = 4.6 \times 10^{-4} \text{ sm s}^{-2} \text{ s} \checkmark$		2
1.	b	i	ALTERNATIVE 1: (considering the acceleration of the spacecraft) time for acceleration = $\frac{30}{6.6 \times 10^{-6}}$ = «4.6×10 ⁶ » «s» (max speed = «answer to (a) × 4.6×10 ⁶ =» 2.1×10 ³ «m s ⁻¹ » 		2
1.	b	ii	problem may be too complicated for exact treatment ✓to make equations/calculations simpler ✓when precision of the calculations is not important ✓some quantities in the problem may not be known exactly ✓		1 max

(continued...)

(Question 1 continued)

C	Question		Answers	Notes	Total
1.	с	i	ions have same (sign of) charge ✓		2
1	с	ii	ions repel each other		
1.	C	"	the forces between the ions do not affect the force on the spacecraft. ✓ there is no effect on the acceleration of the spacecraft. ✓		2
1.	d	i	force per unit mass ✓ acting on a small/test/point mass «placed at the point in the field» ✓		2
1.	d	ii	satellite has a much smaller mass/diameter/size than the planet «so approximates to a point mass» ✓		1

C	Questic	on Answers	Notes	Total
2.	a	ALTERNATIVE 1: $r = \sqrt{\frac{\rho l}{\pi R}} \mathbf{O} \sqrt{\frac{7.2 \times 10^{-7} \times 12.5}{\pi \times 0.1}} \checkmark$ $r = 5.352 \times 10^{-3} \checkmark$ $5.4 \times 10^{-3} \text{ sms }\checkmark$ ALTERNATIVE 2: $A = \frac{7.2 \times 10^{-7} \times 12.5}{0.1} \checkmark$ $r = 5.352 \times 10^{-3} \checkmark$ $5.4 \times 10^{-3} \text{ sms }\checkmark$		3
2.	b	current in lamp = $\frac{5}{24}$ «= 0.21» «A» OR $n = 24 \times \frac{8}{5} \checkmark$ so «38.4 and therefore» 38 lamps \checkmark		2

(continued...)

(Question 2 continued)

Question		Answers	Notes	Total
2.	2. c A		Accept converse arguments for adding lamps in series:	
		when adding more lamps in parallel the brightness stays the same \checkmark	when adding more lamps in series the brightness decreases	
		when adding more lamps in parallel the pd across each remains the same/at the operating value/24 V ✓	when adding more lamps in series the pd decreases	
		when adding more lamps in parallel the current through each remains the same \checkmark	when adding more lamps in series the current decreases	
		lamps can be controlled independently \checkmark	lamps can't be controlled independently	1 max
		the pd across each bulb is larger in parallel \checkmark	the pd across each bulb is smaller in series	
		the current in each bulb is greater in parallel \checkmark	the current in each bulb is smaller in series	
		lamps will be brighter in parallel than in series \checkmark		
		In parallel the pd across the lamps will be the operating value/24 V ✓	in series the pd across the lamps will less than the operating value/24 V	
			Do not accept statements that only compare the overall resistance of the combination of bulbs.	

Q	uestio	n Answers	Notes	Total
3.	a	ALTERNATIVE 1:		
		initial momentum = $mv = \sqrt{2 \times 0.058 \times 0.63} = 0.27 \text{ kg m s}^{-1} \text{ s}^{-1}$		
		OR		
		$mv = 0.058 \times \sqrt{2 \times 9.81 \times 1.1} \approx 0.27 \text{ kg m s}^{-1} \gg \checkmark$		
		force = $\ll \frac{\text{change in momentum}}{\text{time}} = \gg \frac{0.27}{0.055} \checkmark$		
		4.9 «N» ✓		
		<i>F</i> − <i>mg</i> =4.9 so <i>F</i> =5.5 «N» ✓		4
		ALTERNATIVE 2:		
		$\kappa E_{\rm k} = \frac{1}{2} {\rm mv}^2 = 0.63 {\rm J} \times {\rm v} = 4.7 {\rm m s}^{-1} \checkmark$		
		acceleration = $\ll \frac{\Delta v}{\Delta t} = \gg \frac{4.7}{55 \times 10^{-3}} = \ll 85 \text{ m s}^{-2} \gg \checkmark$		
		4.9 «N» ✓		
		$F-mg=4.9$ so $F=5.5$ «N» \checkmark		

(continued...)

(Question 3 continued)

Q	uestio	n Answers	Notes	Total
3.	b	ALTERNATIVE 1:	Allow reverse argument for grass.	
		concrete reduces the stopping time/distance \checkmark		
		impulse/change in momentum same so force greater		
		OR		
		work done same so force greater √		2
		ALTERNATIVE 2:		
		concrete reduces the stopping time \checkmark		
		deceleration is greater so force is greater \checkmark		

C	Questi	on	Answers	Notes	Total
4.	а		«air molecule» moves to the right and then back to the left \checkmark returns to X/original position \checkmark		2
4.	b		wavelength = $2 \times 1.4 \ll 2.8 \text{ m} \gg \checkmark$ $c = \ll f \lambda = \gg 120 \times 2.8 \ll 340 \text{ m s}^{-1} \gg \checkmark$ $K = \ll \rho c^2 = 1.3 \times 340^2 = \gg 1.5 \times 10^5 \checkmark$		3
4.	С	i	construction showing formation of image √	Another straight line/ray from image through the wall with line/ray from intersection at wall back to transmitter. Reflected ray must intersect boat.	1
4.	C	ii	interference pattern is observed OR interference/superposition mentioned \checkmark maximum when two waves occur in phase/path difference is n λ OR minimum when two waves occur 180° out of phase/path difference is (n + 1/2) $\lambda \checkmark$		2

C	Question	Answers	Notes	Total
5.	a	identifies $\lambda = 435 \text{ nm } \checkmark$ $E = \left(\frac{hc}{\lambda}\right) = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{4.35 \times 10^{-7}} \checkmark$ $4.6 \times 10^{-19} \text{ (J)} \checkmark$		
5.	b	–0.605 <i>OR</i> –0.870 <i>OR</i> –1.36 to –5.44 <i>AND</i> arrow pointing downwards ✓	Arrow MUST match calculation in (a)(i) Allow ECF from (a)(i)	1
5.	C	Difference in energy levels is equal to the energy of the photon ✓ Downward arrow as energy is lost by hydrogen/energy is given out in the photon/the electron falls from a higher energy level to a lower one ✓	Allow ECF from (a)(i)	2 3

C	Question		Answers	Notes	Total
6.	а		use of $I \propto \frac{1}{r^2} \ll 1.36 \times 10^3 \times \frac{1}{1.5^2} \gg \checkmark$ 604 «W m ⁻² » \checkmark		2
6.	b		use of $\frac{600}{4}$ for mean intensity \checkmark temperature/K = « $\sqrt[4]{\frac{600}{4 \times 5.67 \times 10^{-8}}}$ = » 230 \checkmark		2
6.	C		recognize the link between molecular density/concentration and pressure ✓ low pressure means too few molecules to produce a significant heating effect <i>OR</i> low pressure means too little radiation re-radiated back to Mars ✓		2

C)uesti	on	Answers	Notes	Total
7.	а	Internal energy is the sum of all the PEs and KEs of the molecules (of the oxygen) ✓ PE of molecules in gaseous state is zero ✓		Molecules/particles/atoms must be included once, if not, award [1 max]	
			(At boiling point) average KE of molecules in gas and liquid is the same \checkmark		2 max
			gases have a higher internal energy ✔		
7.	b	i	ALTERNATIVE 1:		
			flow rate of oxygen = 8 « g s ⁻¹ » \checkmark		
			«2.1×10 ⁵ × 8×10 ⁻³ » = 1.7 «kW » ✓		2
			ALTERNATIVE 2:		-
			Q = «0.25×32×10 ⁻³ ×2.1×10 ⁵ =»1680 «J» ✓		
			power = «1680 W = » 1.7 «kW » ✓		
7.	b	ii	$V = \ll \frac{nRT}{p} = \gg 4.9 \times 10^{-3} \ll m^3 \gg \checkmark$		1
7.	с		ideal gas has point objects ✔	Allow the opposite statements if they are clearly made about oxygen eg oxygen/this can be liquified	
			no intermolecular forces ✓		
			non liquefaction 🗸		1 max
			ideal gas assumes monatomic particles \checkmark		
			the collisions between particles are elastic \checkmark		